Our Breast Cancer Segmentation System represents a breakthrough in medical AI, combining advanced deep learning architectures with real-world healthcare applications. This project demonstrates the power of AI in transforming diagnostic workflows through automated image analysis.
📦 BREAST CANCER SEGMENTATION SYSTEM
├── 📁 Frontend Applications
│ ├── 📁 userapp/
│ │ ├── 📄 views.py # User interface logic
│ │ ├── 📄 models.py # User data models
│ │ ├── 📄 apps.py # App configuration
│ │ └── 📁 migrations/ # Database migrations
│ └── 📁 adminapp/
│ ├── 📄 views.py # Admin dashboard logic
│ ├── 📄 models.py # Admin data models
│ ├── 📄 apps.py # App configuration
│ └── 📁 migrations/ # Database migrations
├── 📁 Backend Core
│ ├── 📁 mainapp/
│ │ ├── 📄 settings.py # Project settings
│ │ ├── 📄 urls.py # URL routing
│ │ └── 📄 wsgi.py # WSGI configuration
│ ├── 📁 Breast_Cancer/
│ │ ├── 📄 __init__.py # Package initialization
│ │ └── 📄 ... # Additional config files
│ └── 📁 Breast Cancer Segmentation/
│ ├── 📁 models/ # ML model implementations
│ │ ├── 📄 deeplabv3.py # DeepLabV3+ model
│ │ └── 📄 unet.py # U-Net model
│ ├── 📁 utils/ # Utility functions
│ │ ├── 📄 preprocessing.py # Image preprocessing
│ │ └── 📄 evaluation.py # Model evaluation
│ └── 📁 data/ # Training and validation data
│ ├── 📁 images/ # Ultrasound images
│ └── 📁 masks/ # Segmentation masks
├── 📁 Database
│ ├── 📄 db.sqlite3 # SQLite database
│ └── 📁 media/
│ └── 📁 uploads/ # User uploaded files
└── 📁 Assets & Environment
├── 📁 assets/
│ ├── 📁 images/ # Static images
│ ├── 📁 css/ # Stylesheets
│ └── 📁 js/ # JavaScript files
└── 📁 env8/ # Python virtual environment
| Metric | DeepLabV3+ | U-Net |
|---|---|---|
| Accuracy | 94.5% | 92.8% |
| Processing Time | 2.5s | 2.8s |
| Input Size | 224x224x3 | 256x256x3 |
| Model Size | 45MB | 38MB |
Need a custom AI solution? Let’s build a cutting-edge system together.
You can access a free sample or unlock full source code including model files, deployment scripts, and setup guide.
Includes: Source code, web app files, trained models, dataset (optional), and deployment video.