Our Mental Health Prediction Web App is an AI-driven platform designed to enable early and accurate detection of potential mental health conditions.By leveraging multiple machine learning algorithms—including Logistic Regression, Random Forest, SVM, KNN, Naive Bayes, Decision Tree, and XGBoost—this solution transforms user data into actionable insights.It empowers individuals and professionals to take proactive steps toward mental well-being while showcasing the power of AI in mental health analytics.
mental_health_prediction/ ├── activation-commands.txt ├── db.sqlite3 ├── libraries.txt ├── manage.py ├── req-software.txt ├── requirements.txt ├── Mental Health Prediction/ │ └── [project files, including .ipynb notebooks, csv files etc. ├── adminapp/ │ ├── __init__.py │ ├── admin.py │ ├── apps.py │ ├── models.py │ ├── tests.py │ ├── views.py │ ├── __pycache__/ │ └── migrations/ ├── assets/ │ ├── static/ │ └── templates/ │ └── main/ │ └── index.html ├── mainapp/ │ ├── __init__.py │ ├── admin.py │ ├── apps.py │ ├── models.py │ ├── tests.py │ ├── views.py │ ├── __pycache__/ │ └── migrations/ ├── media/ │ ├── correlation_heatmap.png │ ├── dataset/ │ ├── plots/ │ └── profilepic/ ├── userapp/ ├── mentalenv/ ├── mentalenv2/ │ └── lib/ │ └── python3.10/ │ └── site-packages/
Metric | ANN | Logistic Regression | Ada Boost | LGBM | Decision Tree | Random Forest |
---|---|---|---|---|---|---|
Accuracy | 75.26% | 67.65% | 76% | 91% | 98.18% | 98.18% |
Processing Time | 0.2s | 0.5s | 0.4s | 0.3s | 0.1s | 0.2s |
Input Features | Behavioral & survey data (e.g., mood, activity, sleep, social interaction) | |||||
Model Size | 50KB | 500KB | 200KB | 100KB | 30KB | 80KB |
Need a custom AI solution? Let’s build a cutting-edge system together.
You can access a free sample or unlock full source code including model files, deployment scripts, and setup guide.
Includes: Source code, web app files, trained models, dataset (optional), and deployment video.