Breast Cancer Segmentation using Deep Learning: Real-Time AI Detection System

🔍 Project Overview

Our Breast Cancer Segmentation System represents a breakthrough in medical AI, combining advanced deep learning architectures with real-world healthcare applications. This project demonstrates the power of AI in transforming diagnostic workflows through automated image analysis.

🏆 Key Achievements

  • 94.5% accuracy in tumor segmentation
  • Real-time processing (2.5 seconds per image)
  • Dual-model architecture (DeepLabV3+ & U-Net)
  • Medical-grade reliability and clinical validation

🎥 Project Explanation Video

📌 Video Highlights

  • Live detection demonstration
  • Technical architecture walkthrough
  • Performance metrics showcase

🛠️ Technical Stack

Frontend

  • Django Web Framework
  • HTML5 / CSS3 / JavaScript
  • Responsive UI Design
  • Medical-grade interface

Backend

  • Python 3.8+
  • PyTorch Deep Learning
  • PostgreSQL Database
  • RESTful API Architecture

AI Models

  • DeepLabV3+ with ResNet-50 backbone
  • Custom U-Net with VGG16 encoder
  • Real-time inference pipeline

📂 Project Structure: Breast Cancer Segmentation System

📦 BREAST CANCER SEGMENTATION SYSTEM
├── 📁 Frontend Applications
│   ├── 📁 userapp/
│   │   ├── 📄 views.py          # User interface logic
│   │   ├── 📄 models.py         # User data models
│   │   ├── 📄 apps.py           # App configuration
│   │   └── 📁 migrations/       # Database migrations
│   └── 📁 adminapp/
│       ├── 📄 views.py          # Admin dashboard logic
│       ├── 📄 models.py         # Admin data models
│       ├── 📄 apps.py           # App configuration
│       └── 📁 migrations/       # Database migrations
├── 📁 Backend Core
│   ├── 📁 mainapp/
│   │   ├── 📄 settings.py       # Project settings
│   │   ├── 📄 urls.py           # URL routing
│   │   └── 📄 wsgi.py           # WSGI configuration
│   ├── 📁 Breast_Cancer/
│   │   ├── 📄 __init__.py       # Package initialization
│   │   └── 📄 ...               # Additional config files
│   └── 📁 Breast Cancer Segmentation/
│       ├── 📁 models/           # ML model implementations
│       │   ├── 📄 deeplabv3.py  # DeepLabV3+ model
│       │   └── 📄 unet.py       # U-Net model
│       ├── 📁 utils/            # Utility functions
│       │   ├── 📄 preprocessing.py  # Image preprocessing
│       │   └── 📄 evaluation.py     # Model evaluation
│       └── 📁 data/             # Training and validation data
│           ├── 📁 images/       # Ultrasound images
│           └── 📁 masks/        # Segmentation masks
├── 📁 Database
│   ├── 📄 db.sqlite3            # SQLite database
│   └── 📁 media/
│       └── 📁 uploads/          # User uploaded files
└── 📁 Assets & Environment
    ├── 📁 assets/
    │   ├── 📁 images/           # Static images
    │   ├── 📁 css/              # Stylesheets
    │   └── 📁 js/               # JavaScript files
    └── 📁 env8/                 # Python virtual environment

📊 System Performance

MetricDeepLabV3+U-Net
Accuracy94.5%92.8%
Processing Time2.5s2.8s
Input Size224x224x3256x256x3
Model Size45MB38MB

✨ Core Features

  • Real-Time Processing: Instant ultrasound image analysis
  • Dual-Model Architecture: Model ensemble for better results
  • Medical-Grade Interface: Built for clinicians
  • Analytics Dashboard: Segmentation reports and metrics
  • DICOM Support: Compatible with medical imaging

🚀 Ready to Build Something Similar?

Need a custom AI solution? Let’s build a cutting-edge system together.

💾 Download Project Files

You can access a free sample or unlock full source code including model files, deployment scripts, and setup guide.

Includes: Source code, web app files, trained models, dataset (optional), and deployment video.

🚀 Let’s Work Together

🚀 Let’s Work Together