Our Breast Cancer Segmentation System represents a breakthrough in medical AI, combining advanced deep learning architectures with real-world healthcare applications. This project demonstrates the power of AI in transforming diagnostic workflows through automated image analysis.
📦 BREAST CANCER SEGMENTATION SYSTEM ├── 📁 Frontend Applications │ ├── 📁 userapp/ │ │ ├── 📄 views.py # User interface logic │ │ ├── 📄 models.py # User data models │ │ ├── 📄 apps.py # App configuration │ │ └── 📁 migrations/ # Database migrations │ └── 📁 adminapp/ │ ├── 📄 views.py # Admin dashboard logic │ ├── 📄 models.py # Admin data models │ ├── 📄 apps.py # App configuration │ └── 📁 migrations/ # Database migrations ├── 📁 Backend Core │ ├── 📁 mainapp/ │ │ ├── 📄 settings.py # Project settings │ │ ├── 📄 urls.py # URL routing │ │ └── 📄 wsgi.py # WSGI configuration │ ├── 📁 Breast_Cancer/ │ │ ├── 📄 __init__.py # Package initialization │ │ └── 📄 ... # Additional config files │ └── 📁 Breast Cancer Segmentation/ │ ├── 📁 models/ # ML model implementations │ │ ├── 📄 deeplabv3.py # DeepLabV3+ model │ │ └── 📄 unet.py # U-Net model │ ├── 📁 utils/ # Utility functions │ │ ├── 📄 preprocessing.py # Image preprocessing │ │ └── 📄 evaluation.py # Model evaluation │ └── 📁 data/ # Training and validation data │ ├── 📁 images/ # Ultrasound images │ └── 📁 masks/ # Segmentation masks ├── 📁 Database │ ├── 📄 db.sqlite3 # SQLite database │ └── 📁 media/ │ └── 📁 uploads/ # User uploaded files └── 📁 Assets & Environment ├── 📁 assets/ │ ├── 📁 images/ # Static images │ ├── 📁 css/ # Stylesheets │ └── 📁 js/ # JavaScript files └── 📁 env8/ # Python virtual environment
Metric | DeepLabV3+ | U-Net |
---|---|---|
Accuracy | 94.5% | 92.8% |
Processing Time | 2.5s | 2.8s |
Input Size | 224x224x3 | 256x256x3 |
Model Size | 45MB | 38MB |
Need a custom AI solution? Let’s build a cutting-edge system together.
You can access a free sample or unlock full source code including model files, deployment scripts, and setup guide.
Includes: Source code, web app files, trained models, dataset (optional), and deployment video.